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INTRODUCTION

Some results on best approximation in concrete spaces, e.g., the space of
continuous functions or the space of integrable functions. lead us to
introduce in [8.10] two classes of normed linear spaces called “with
property (C)" |8] and “with property (A4)" [10]. which seems to be
particularly well suited for applications to best approximation. To support
this idea, we present here much new material which. we hope, will convince
the reader of the usefulness of these classes. From our general results proved
for a space which belongs to one or both of these classes, we derive many
known results for the concrete spaces which are contained in |1, 5, 6. & 12.
14, 15. 17,19, 21|. We notice here that these results for the concrete spaces
referred to above are sometimes formulated and alwayvs proved. using the
specific properties of the spaces under consideration.

Another way of generalization concerns the approximant set. In this paper
we consider best approximation by elements of suns. As is well known, any
convex set is a sun, but the converse is not true. Hence some results on best
approximation by elements of linear subspaces or convex sets in the concrete
spaces can be extended to suns. using our results.

On the other hand. the simple fact that a concrete space belongs to one or
both of these classes furnishes (by the definitions of these classes)
geometrical properties of that space. In particular. we obtain common
geometrical properties for the main concrete spaces C(Q). Co(T). LT, u).
LT, u).

This paper contains four sections, Section | being a presentation of known
results or facts from functional analysis and the theory of best approx-
imation, as well as the terminology and notations necessary for an easy
understanding of the other sections. Section 2. resp. Section 3, deals with the
class of spaces with property (C). resp. (A). The main result of Section 2
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gives a necessary and sufficient condition in order that a sun it a space with
property {C) be semi-Chebyshev. This result is used in Section 4, which deals
with the class of spaces having both property (C) and property (A1 to prove
a characterization of a semi-Chebyshev sun by the strict Kolmogoros
criterion. Applications are given throughout these last three sections.

In this paper we consider real normed linear spaces. but the results can be
extended in the usual way 1o the complex normed linear spaces

I, PRELIMINARIES

Throughout this paper £ will stand tor a rear normed linear space, its uni

sphere being denoted by &, . und its conjugate space by £7 For v e [ e
us denote by rix. vy the one-sided Gateaux ditfferential ar i the direction +

Le.
. (v [
t{x.vj= hm e
IO 3
It is well known (sec. e.g.. 17]) that
A T ORI A N ) i

For each v & F we denote

N =NV s pve Lo vt = i - vy e U

Then by (1180 we have

Vivy =40 g s
and by 161 we have
A{N) R Tyt e TlaL e v e U
where foraset 4 c F*. A4 = {x & £1f{x)=0foreach /¢

Summarizing some known facts in the concrete spaces {see | 1{. 3. 10 oy
formulas (1.4), (1.5) and |10] for (1.6}1-{1.8)), we have the lfollowing usetul
formuias.

Let C(Q) be the Banach space of all real-valued continuous runctions vyt
the compact Hausdorff space Q with the sup norm. and for x & C{Q) let us
denote by critx = {g & Q| Ix(g) = lxiland Z(x) =g & O x{g;= 0. Then

Nx)={re C(Q}crit x < Z{¥)} 4 Ly Pt
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When (7. u) is a positive measure space, let L '(7. ) be the Banach space
of the equivalence classes of measurable real-valued functions x on T for
which |x[=1, ,x|du < oo, and for x& L'(T.u) we denote by Z(x)=
€ Thx(t) =0} (defined up to a g-null set). Then

Nx)={ve L (T.u) Z(x)= Z(y)ae.! (1.5)
and for each x. v € L'(T.u) we have

) - e d) ] v sign X du. (1.6}

<~ AV AR

dist(y. N(x)) = ,. Cvodu. (175

When @ is a compact Hausdorff space and v a positive Radon measure on
{ such that the support of v is Q. let C'(Q.v) be the linear subspace of
L'(Q. v). of the equivalence classes of real-valued continuous functions on Q,
with the norm [[x[{= |, x| dr. Then for each x € C'(Q.v) we have [10] that
Noio.mlx) is dense in v, 5, ,(x) and (1.5)-(1.7) are true, replacing L U by
C'. Tby Q and u by 1.

Let /7 be the Banach space of all real bounded sequences endowed with

the sup norm. and for x = () €7, let I = n‘ &, ="1x|'i and let .7, be
the set of all sequences (#,}) such that hm Eoo= rlyle iyl g, @ i
Then

Nivje= o= e!” y,=0nel Jdimy, =0, (n)e 100 |[x] (18)

The last part of this section contains the background material from best
approximation theory, which will be used in the other sections.

{et (G be a nonempty subset of £, and for x € E let us denote by P (v) the
set of all best approximations of x out of G ie.

Pox) = 18 € Gl g = dist(x. G)\.

The set ¢ is called: (1) proximinal if P,(x)+ @ for each x € £ (2) semi-
Chebysher it P,(x) contains at most one element for each x& E: (3)
Chebysher if P, ( <) contains exactly one element for each v & E.

An clement g, € G is called a strongly unique element of best approx-
imation of x € £ if there exists a number p > 0 such that for each g€ G,
Iv—gizilx—gl +pllg —gll. G is said to be a strongly Chebyshev set. if
gach x € F has a strongly unique element of best approximation in G.
Clearly. if g, € G is a strongly unique element of best approximation of x in
. then P, (x)= {g,}. The converse is not always true.
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For x € E\G and g, € G. we recall that the pair (g,.x) is said to satisfy
the Kolmogorov criterion (with respect to G) if t(x — g,. g, — £) = 0 for each
g€ G, and the strict Kolmogorov criterion (with respect to G) if
T(x — g4, &0 — &) > 0 for each g € G\{g,!. In the literature these criteria are
given in another (equivalent) form. Namely {see, e.g.. |15]). the pair (g,. v}
is said to satisfy the Kolmogorov criterion (similarly for the other criterion)
if for each g€ G, minlf(g ~g,) i f€exA(x- g} <0, where ex A{x - g,)
is the set of the extreme points of 4{x — g,). One can see immediately that
they are equivalent using formula (1.9) below (see the first equality in
[13. 18] and the second in {2]). For x. 1 € E we have

r(x. ) =max{ /()| fE€ Alx)] = max{f{y) i/ E ex A (19

A set G E is called a sun (sec. eg.. |20]) if for each x & £ and
26 € Poix). we have g, € P{ax + (1 - a)g,) for each « > 1. Notice that for
0 a1, the relation g, € P {ax + (1 - «)g,) holds for any set G. The
Kolmogorov criterion was used to characterize the elements of best approx:
imation when G is a sun, since Brosowski [3| proved the following result:

[.1. THEOREM |3|. A4 ser G < E is a sun if and only if for cach v & £5G.
gy € G, the following statements are equivalent
(1) gy & Pulx)
(it} {g,.x) satisfies the Kolmogorov criterion.
Notice that (it} = (1) is valid for an arbitrary set G.
We shall need the following simple, but useful. results.

1.2. Lemma {131 Let U be a subset of L, SEERG and g, 0 G
(8. x) satisfies the strict Kolmogorov criterion. then P, (x) = (g,

When G is a lincar subspace of £. we denote by P, {0y v /o
0e P L0

1.3. ProposITiON |5]. A linear subspace G of £ is Chebysher {f ana
onlv if GO P 0)=E.

2. Spaces wiTH PROPERTY (()

2.1. DeriNiTioN 8], The space £ is called with properiy {C) # for each
XE S, and each a € A(x) . llal|=1. we have a= (z, - z,)/2. for some
z, € 8§, with A(x) < A{z,), i = 1,2, Notice that by (1.2}, z; € N{x} and we
have z; = x + q, for some a; € 4(x) .i= .2
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Geometrically, the space E has property (C), if for each x € S, the closed
linear subspace N(x) of E has the property described as follows. Since x is a
smooth point of §,,,. there exists a unique ¢ € S,,,,- such that ¢(x)=
fxll=1. Let F.={z€ Sy, lo(z)=1} Then F_is a face of S, , with
X € F . Property (C) requires that each a € A(x), (= {z € N{x)]| p{z) = 0}).
| a| = 1. to be in the middle of a segment with an end-point in F_ and the
other in —F

X

2.2. Remark. 1If E has property (C), then for each x € §, and each
a€A(x),, |lal| <1. we have a=(z,—1z,)/2 for some z;€ 58, with
AlxYc A(z). i=1.2.

In (8] we have shown that the spaces C(Q) and L'(T.u), (L")F =L ".
have property (C). Using [10, Lemma 2|, the assumption (L')* = L * can be
deleted. (We recall that for x € S, and a € A(x) .. |'al| = 1, we can choose in
Definition 2.1, for £ = C(Q), z, = x({ —|a|) + a. z, = x(1 —|a]) — a and for
E=L"T.u), z,=a+|alsignx. z, = —a + |a| sign x.)

If 4 is a closed set in Q, then the following subspace of C(Q), /, =
Ix € C(Q)|x|A =0} has property (C). the proof being similar with that for
C(Q). Hence the space Cy(T) of all real-valued functions on the locally
compact space 7. vanishing at infinity, endowed with the sup norm, has
property (C). In particular, ¢, has this property. Since property (C) is
invariant under linearly isometries, it follows that L (T, u) has property (C).

2.3. Remark. No smooth or strictly convex space E. dim £ > 2. has
property (C).

2.4. Remark. Property (C) behaves badly with respect to the heredity.
We shall show below (see Remark 2.12) that the space C'(|a.b],v). v the
Lebesgue measure, has not property (C), though it is a dense subspace of
L'(|a.b|.v) which has this property. If E is an arbitrary 2-dimensional
space, then £ has property (C) if and only if its unit ball is a parallelogram.
Hence by |10, Proposition 1, Theorem 7| and Remark 2.3 above, it follows
that when E is a space with property (C). dim £ 2> 3, then there exists a 2-
dimensional subspace of £ which has not property (C).

The main result of this section is the following characterization of a semi-
Chebyshev set G, when G is a sun in a space with property (C).

2.5. THEOREM. Let E be a space with property (C) and G a sun of E.
Then G is semi-Chebyshev if and only if for each x & ENG and each
ga € Po(x) we have (G —g,) M A(x —g,) = {0}

Proof. Suppose there are x € E\G, and g, € P(x) such that for some
£, €G. g, #g, we have g, —g,€ (G —g,)MA(x —g,)_. Since G is a sun.
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we can suppose |lx — g, = 1. The space £ having property (C}. there exisi
z,€ 8, with A(x — g,) < A(z;), i = 1. 2. such that

_gx ‘"gn__m Sy s RE
L&y gl 2 .
Since g, € P (x) by Theorem 1.1, we have rix— g, g, 2320 for cach

1 . i

gc G, Then by A{x g Az = 3020 and b9 i follows
t{z; gy~ g1 20 for each g€ G. whence O P, (2,1 ¢+ i 2 and since
G-g,isasun. 0P, (g, -g,0/2)z). i=1.2. Hence, by 2, €S,
i1, 20 and {2.1). we have

Therefore 0.g, g, &P, (g, ~gul/2) 2. that is. G g, Is 0ot sems
Chebyshev, and so ¢ is not semi-Chebyshev, This proves the “only o7
portion of the theorem.

To prove the “if" portion. suppose there is v A& such tha
g8, € P ivi g, #¢g,. By Theorem 1.1 it follows that (v - g,. ¢, g} .20
for each ¢& (. For g=g, we must have 7(x g, g, - g, }=0 since
otherwise the pair (0. x - g,) satisfies the strict Kolmogorov criterion with
respect o the set L, = lalg, - g,) ¢ =0 whence by Lemma ! 2
P (x - gu) = 101 on the other hand. by g,. ¢, € P (x). we have

RIS TR R OT N F N
hence O#g, - g, € P, (x- g,). contradicng P, {x - g, 01 Therefore
(X — g4 &, — &, )=0. whence by (1.1} we get r{x g,.2, - g, >0 Then
the pair (0.x- g,) satisfies the Kolmogorov criterion with respect 10
the I-dimensional subspace [g, - g,] and so 0 € P ity go) By 4220
we also have g, g, € P, (x—gy) Let y=2x g -4z}
Then P a0V =2P, (x—g) (g ~g) and since O.g g,.&
Pre el —gy) it follows +(g, —g,) € P, (1} whence. since this iatter
set is convex. 0 € P, (). Therefore we have

=y (g —ggl= 1= (g~ o) (2.3)

By 0e€P,, ., y) and Theorem I.I we get (1. :{g, ~g, >0 1
t(v. g, — g,) > O. then the pair (0, v) satisfies the strict Kolmogorov criterion
with respect to the set L,={a{g, - g,): ¢« <0}, whence by Lemma [.2.
P, (y)=1{0L By (23) we get g, g, &P, (y). a contradiction. So.
z{f*,g1 — g} =0, and in a similar way. using the set L, and (2.3), it follows
that t{y.g,—g,)=0. By (1.3) we obtain that g, —g,EA(y) . Let
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w=1r+g, Thenw=2x+(1 —2)g, and since Gis asun and g, € P (x), it
follows g, € P,(w). Using (2.3) we have |lw —g, | =1(y +g,) —g,/l= | yil=
My +gy)—gl=ltw—gyl. and so g, € P.(w). Since w—g, =1 we get
O+g,—g,€(G—g,)MA(w—g,) . which completes the proof of the
theorem.

We notice that in the proof of the ~if” part of Theorem 2.5 we have not
used the hypothesis that £ has property (C), so we have a sufficient
condition for a sun ¢ in an arbitrary space to be semi-Chebyshev.

An immediate consequence of Theorem 2.5 i3

2.6. COROLLARY. Let E be a space with property (C) and G a linear
subspace of E. Then G is semi-Chebvshev if and only if A{x} NG = 10}, for
cach x € P, *(0).

The necessity condition in Corollary 2.6 can be improved. Indeed. an casy
consequence of Corollary 2.6 gives

2.7. CoroLLARY |8].  Ler E be a space with properiy (C) and G a linear
subspace of E. Then G is semi-Chebysher if and only if N(x)M™ G == 10} for
each x € P '(0).

Even when G is a convex set. we can not improve the “only if” condition
in Theorem 2,5 by the condition N(x —g,) (G —g,) = {01, x€ E\G.
gy & P.(x). as simple examples show.

For £=C(Q) (resp. £=L'(T.u)) by Corollary 2.6 and (1.4) (resp.
Corollary 2.7 and (1.5)) we obtain the following result of Cheney and
Waulbert |5. Theorem 10] (resp. [3, Theorem 21}). which states that a linear
subspace G < C(Q) (resp. G < L'(T.u}) is semi-Chebyshev if and only if 0
is the only element in G which vanishes on an «-set (resp. a f-set). where
an «,-set is any set of the form crit x for some x € P '(0) {resp. a f, -set is
any set of the form Z(x) for some x € P '(0)).

Using (1.8) and Corollary 2.6 we obtain a result for /* of the same form
as those of Cheney and Wulbert mentioned above.

2.8. COROLLARY. A linear subspace G <[’ is semi-Chebvshev if" and
only if O is the only element in G whose coordinates vanish on I and tend 1o
zero for sequences (n,) €.t ., for x € P;'(0).

Using Theorem 2.5 we can also obtain results of a similar form with those
above, when G is a sun in C(Q), L' (T u), "

By Corollary 2.8 we can easily prove the following result of Phelps ([17.
p. 251|; actually Phelps considered the space L7 (T, u)): Let g=1(7,)€E".
|g|=1. Then the I-dimensional subspace G = [g]| of /* is Chebyshev if.
and only if inf|y,| > 0. Indeed, if inf y,| > 0, then by Corollary 2.8. G is
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Chebyshev. Suppose now inf}y, = 0. If there is an index n, such that
¥w, = 0. then for x = (,), &, = | and &, =0 for n # n,, we have x € P, '(0),
I.={n,} and .7/_ =@. Since the element g& G vanishes on /. by
Corollary 2.8, G is not Chebyshev. If 7, %0 for all ». then there exists a
subsequence (1) such that lim{y, ; = 0. and we can suppose ;, > 0 for all
k. Let x=1(¢,) €1 be defined by {, =1 -y, . k=1 2.. and =0 for
i€ (n,). Then ||x|=1.x€& P;'(0), and we have /., =@ and . 7 _ is the set of
all subsequences of (n,). Again by Corollary 2.8, G is not Chebyshev.
Theorem 2.5 can be used to obtain necessary conditions for a sun G to be
Chebyshev in some particular infinite-dimensional spaces with property (C).

The condition 0 € G in the following is not a restrictive one. since G is a
Chebyshev sun if and only if G —g is a Chebyshev sun, g € G.

2.9. CoROLLARY. Let E be an infinite-dimensional space with property
(C) such that for each x € §,.. codim N(x) < o, and let G be a sun in k.
0eG. I M=splG}# E is infinite-dimensional and G contains an interior
point relative to M. then G is not Chebvsherv. In particular. such a space I
has no infinite-dimensional Chebyshev subspaces # k.

Proof.  Suppose all the conditions in Corollary 2.9 are satisfied and G is
Chebyshev. Let g, € G be such that im& Mijm - g,i< i< G tor some
¢>0. In |9] it was shown that for any proximinal set G in an arbitrary
space £ the set .o, = | g € bd G | there exists x € E\G with g€ P;(x)] is
dense in bd . Since M #FE, we have g,©bd G and so there exists
£ €bdG. g, ~ g,ll <& such that g, € P(x) for some x € E\G. Then there
is 0 > 0 such that im € M| {m —g,|| < d} < G. whence {m & M[ fm| <oy
{G—g,). Since dmM=1rc0 and codimd{x—g,} <o, we have
A(x ~g,) NG —g,)+ |0} which contradicts Theorem 2.5,

The space E == ¢, satisfies the conditions of Corollary 2.9. So by this result
we obtain the known fact (see. e.g.. |19]) that ¢, has no infinite-dimensional
Chebyshev subspaces #¢,.

With a proof similar to that of Corollary 2.9. one can show

2.10. Corovrary. Let E be an infinite-dimensional space with properiy
(C). such that for each x € S, dim N{x)= oo, and let G be g sun in E.
0€ G. If M =spl{G\ %= E is closed and of finite codimension. and G confains
an interior point relative to M. then G is not Chebyshev. In particular. such a
space E has no Chebysher subspaces of finite codimension + E.

The space £ = L'(T, u). where (7, ) has no atoms, satisfies the conditions
of Corollary 2.10, whence we obtain to known fact (see, e.g., |19]) that if
(7.u1) has no atoms then L'(7,u) has no Chebyshev subspaces of finite
codimension % L'(T. u).

By Proposition 1.3 and Corollary 2.7 we get the following necessary
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condition on a space with property (C) in order to have a Chebyshev
subspace of codimension #.

2.11. CorOLLARY. Let E be a space with property (C) which has a
Chebysher subspace of codimension n. Then there exist at least n linearly
independent elements x, ... x, € S, such that dim N(x;) < n, i= lL...n.

Hence for £ = L'(T.u) we obtain the “only if” part of the following result
(see, e.g. |19]): The space L'(T,u) has a Chebyshev subspace of
codimension # if and only if (7, ) has at least n atoms. For E = C(]a, b])
we obtain the known fact (see, e.g., | 19]) that it has no Chebyshev subspaces
of codimension n for 2 < n < oo (since in this space for x = 1. by (1.4).
N(x) = |x] and for each y € S;.. v # +x. we have dim N{)) = o).

Finally, we give the following consequence of Corollary 2.7.

2.12. Remark. The space C'(Ja.b|,v), v the Lebesgue measure has not
property (C). Indeed, suppose it has this property. and let G be the sct of all
algebraic polynomials of degree <n defined on |a, b]. By Jackson's Theorem
(see. e.g.. [19]). G is a Chebyshev subspace of C'(|a.b|.v). Let p, ., be a
polynomial of degree n + | defined on |a.b]. and let p, € G such that
PoAp,. )=1{p,i. Then x=p, ,—p,E P, "(0) is a polynomial of degree
n+ 11 it has at most n + 1 zeros in |a.b|, whence by (1.5) for C'. we get
N(x)=C'(Ja.b],v). Then N(x)NG=G. in contradiction  with
Corollary 2.7. Therefore C'(|a. b|,v) has nct property (C).

3. SPACES WITH PROPERTY (A1)

We remarked in |10] that for each x, » € E we have
t(x, 1)+ . —y) < 2 dist(y, N(x)). (3.1)

3.1. DEFINITION |10]. A space E is called with property (A) if 7(x,v) +
r(x. =)= 2 dist(y. N(x)) for each x. v € S, (equivalently. for each x,y € E).

In | 10] we asked whether the space C(Q) has property (A). An affirmative
answer is given in the next result.

3.2. THEOREM. The space E = C(Q) has property (A). Moreover, for
each x € S,.. N(x) is proximinal.

Proof. Let x.v € S, such that vy & N(x). By (1.9) we have

t(x. 1) = max| y(qg) sign x(q) | g € crit x}. (3.2)
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Let us put

A ) IR
and denote by [, = g€ Qixtgl= 1} and - ~ g @ xigi= 1 Deline
the following continuous function on ¢t s

tigy— A - vigh g, .
{34

A Vg ge ..

Using {3.2) and {3.3} one can easily show that jr{g) < (t{x. v+ 7l - 332
for each ¢ € crit x. By Tietzes Theorem there cxists a wnmmot:a funciion o
on (. such that w(g)= rvlg) for ecach g€cerity and  fwis

(Tl vy o~ ol ;320 Let o= w - 30 Since for g€ coritas w{g) - lgk
(3. 4} and {f ) t follows = & N{x}). We have dist{ . N{x)) = i_i‘ SRR RS
{r{x vy o+ r{\ a}}’ whence by f4.0n distr My = {ofy, oy
r{x, =1))/2 = Iy i which show that C{¢Q) has property (.»I) and that Ny}

15 proximinalu

With a prool similar to that above. it follows that for any closed s
Ao Q0 1, has property (1) and for each v & [ 0 N{xvY s proximinal. In
particular, C,(77} has these properties. Since property (11 i nvariant under
linear isometrics. the space L' (7. 41 has property (1) and N{xy s prox
wminal for each v &1 “(Foan In 110! we remarked that am \*muvth ‘qun:{:
has property (of L and we proved that the spaces L7 ub and CHQL vy have
property {11 Weo noticed there that for cach v & L7, ai ~\(.\} YOTOX
iminal. Property (417 {as well as property (O behaves badiy with respect to
the heredity 1101

We do nat know an example of a space with property ('} but without (.1}
Notice that property (C) implies that for cach v & 8§, . anv face of §,
containing v has the diameter § or 2, while property 1} imphes that tfor

e
ach v S, the diameter of the set Aivie E%is 0 or 2,

3.3, TuroreM. Let E be a normed linear space. The following assertions
are equivalent:

(1} £ has property (A).
{ity For each sun G of E, each x € E\G and g, € G. the condition
Y - gy g o) TN g8y &)
< 2dist{g — gy N(x — gy)) (€ G (3.5)

is a necessary and sufficient condition that g, € P {x).
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(iii}  For each linear subspace G — E, each x € E\G and g, € G. the
condition

IT(v — g0~ 8 — &o) — Tlx — g0 8y — &)l
< 2dist(g — gy N(x — gy)) (g€ G (3.6)

is a necessary and sufficient condition that g, € P (x).

Proof. (i) = (ii). Let G be asun of E, x € E\G and g, € G. If g, € P, (x).
by Theorem 1.1 we have t(x — g,. ¢, ¢) >0 for each g € G. Hence. using
also (L.1). we have T(.\ " €08 g(») = T{x go-80 g) < (X — g 8~ gu) +
v gy gy - g) < 2dist{g — g, Nv  g,)) for each g€ (. so we have
{3.3). Note that for the necessity part we have not used the hypothesis (1). If
F has property () and (3.5) holds. then clearly the pair (g,..x) satisfies the
Kolmogorov criterion, whence by Theorem 1.1. g, € P, (x).

The implications (i) =- (i) = (i) follow by |10. Theorem 3|.

In the class of spaces with property (1), statement (ii) or (iii) does not say
more than Theorem 1.1, so only the implication (iii)-» (i) is worth noting.

When £ = L'(T.u), it we replace in (3.6) resp. (3.3) the expressions given
hv (1.6) and (1.7), then (iii) is a result of Kripke and Rivlin |12,
Theorem 1.3 and (ii) is a result of Deutsch |6].

34, Remark. 1t was observed in |15] that when G i1s a set in an
arbitrary normed linear space £ such that for cach x € G and g, € P(x)
the pair tg,.v) satisfies the strict Kolmogorov criterion. then G is a semi
Chebyshev sun. This follows by Theorem 1.1 and Lemma 1.2.

Using Remark 3.4 and Theorem 3.3 one can easily prove

J.5. PROPOSITION. Let E be a space with properiv (A) and G a set in E.
The following assertions are equivalent:

i) For each x € E\G and g, € G. the pair (g,.x) satisfies the strici
Kolmogorov criterion.

(1i)  For each x € E\G. g, € P(x). g€ G\{g,}. we hate

TY = 848~ &) — T(x — gy &y §) < 2dist(g — g, Nx —gy)). (3.7)

For E = L'(T.u), if we replace in (3.7) the expressions given by (1.6) and
(1.7). then Proposition 3.5 gives |15, Theorem 2.8, (2) < (4)].

By Remark 3.4. the condition (i) in Proposition 3.5 implies that G is a
semi-Chebyshev sun in an arbitrary normed linear space. The converse is not
always true even when £ has property (A) and G is a linear subspace, as
simple examples in a strictly convex and smooth space show. We shall see in
the next section that under some additional assumptions on E, this converse
statement is true.



168 G. GODINI
4. SPACES WITH BOTH PROPERTIES (C) AND (A1)

As one can see by Sections 2 and 3. the following spaces have both
properties (C) and (A): C(Q), I, (4 a closed subset of Q). C(T). L " (T.u)
L'(T,u). By Theorem 3.1 and the comments after the proof of this theorem.
in each of the above concrete spaces, N(x) is proximinal for cach v & £,

4.1. THEOREM. Let E be a normed linear space with properties (C) and
(A) such that for each x € E. N(x) is proximinal. and let G be a subset of E.
The following assertions are equivalen:i:

(i) G is a semi-Chebyshev sun.
(ii) For each x € E\G and g, € P.(x). the pair (g,.x) satisfies the
strict Kolmogorov criterion.

Proof- By Remark 3.3 we must only show that (i) = (ii}. Let G be &
semi-Chebyshev sun and suppose there are x € E\G and g, € P, (x) such
that 7(x — g,. g, — &,) < 0 for some g, € G\{g,|. Without loss of generality
we can suppose g, =0 and /x| = 1. Since 0 €& P_(x), by Theorem L.1. it
follows z(x. —g,)=0. By (1.1) we have r(x.g,) > 0. Then r(x.g,) > O, since
otherwise by (1.3). 0 g, € A(x) MG, whence by Theorem 2.5 G is not
semi-Chebyshev, a contradiction. Hence by (1.9) there exist f,./, < 4(x)
such that

v g)=/1(g) > 0, (4.1)
Tx. =g} =/i-g) =0 (4.2)

Since N(x) is proximinal, there is y € Py ,(£,). By (1.2). r=4Ax +a for
some A€ R and a€ A(x) . Hence, using the hypothesis on £ to have
property (A), and (4.1), (4.2). we get

0. (4.

(9%}

)

g, — ix - al| = dist(g, Nx)) = 280 L8

22

Since f, € A(x). we have by (4.3) that fi{g,)—+=/(g —Ax—a)s
lg, - Ax —all=/f(g,)/2. and s0 4 > f,(g,)/2 =] g, — Ax — all. By (4.2) and
Sy EA(x) we have that A=f,(Ax+a—-g)<|Ax+a- g, l. and so A =
Ax +a—g,| > 0.

If a=0, then A =|j]Ax — g, | = |Ax], and since 0 € P;(x) and G is a sun,
we get 0, g, € P,;(Ax), which contradicts (i). Therefore a # 0. and using the
hypothesis that £ has property (C), we have a/|ialj=(z, — z,)/2. where
z; €S8, and A(x) < A(z;). i=1.2. Now. z;,=x 4 a,; for some a,€ A(x) .
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i=1.2, and so a/|la]| = (a, — a,)/2. Since 0 € P, (x) and [ x +q,[ =1 =
ilxll. i= 1.2, it follows that

|x + aa;| =1 foreachOagl.i= 1,2 (4.4)
Let

o el
z:(’-‘ﬂla!)»\+—2—al.

Then by (4.4) we have

X 4 — =A+lal

20+ fal)

| ial|
| “
|

Now. for each /€ A{x) we have f(z)=4 + |lal=|z|. and so A(x) = A(z).
Since 0€ Pg(x)., by Theorem I.I we have r{x.—g)>0 for each g€ G.
whence by (1.9) and A(x) < A(z) we have also 7(z. —g) = 0 for cach g € G,
hence 0 € P (z). On the other hand.

i I
hr—g/llAxta-g, + ‘ fal x4 = a“
| o i
- Lal Haj I
=4+ !l\ai,\'+——2——a,———7—(al—a3)1
i “ i
| a. |
+ \aH!x 4 'SLHT/ +dal =1z
b Z

Theretore. 0. ¢, € P, (z) which contradicts (i) and completes the proof.

For £ = L'(T,u). the equivalence (i) <> (ii) in Theorem 4.1 was proved by
Niirnberger |13. Theorem 2.8. (1) < (2)]. Replacing condition (i) by ¢ is
semi-Chebyshev.” the equivalence of this condition with (ii) was proved in
[15. Theorem 2.4, (1)< (3)] for E:=C(Q) and  a finite dimensional
convex set. Theorem 4.1 generalizes this result for arbitrary suns of C(Q).
The equivalence (i)« (ii) in Theorem 4.1 is also true for 7,. C/(T).
LT u).

By [15. Remark 3.3] and Theorem4.1. we obtain immediately the
following result.

4.2. CoOrROLLARY. Let E be a space with properties (C) and (A), such
that N(x) is proximinal for each x € E. and let G be a set in E.

(1) If G is a finite-dimensional Chebyshev subspace of E, then G is a
strongly Chebyshev subspace.
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(1) Ly G is a one-dimensional convex Chebysher set of E. then 6y
strongly Chebysher.

(ui) I Gods g finite-dimensional semi-Chebysher convex cone winh
vertex in the origin of E, then for each v € I with Q& P ix) the element 1} s
a strongly unique element of best approximation

Statement (i) in Corolfary 4.2 has been proved by Newman und Shapire
Pl for B C(Q), by Ault er al. U] for £« Cy T, by Wulbert 1217 S
£ LY gy and by Numberger [15] for £+ 7, Statements (1} and (aidr
Corollary 4.2 have been proved by NUrnberger for & 07, o 2707w

Corollary 4.2 can be used to obtair sufficient conditions for the motriv
projection to be pointwise Lipschitzian since Cheney T4 po 821 showed tha
pointwise Lipschilzian continuity follows front strong unicity properties For
S or B a0 resdlts on pointwine Lipschitzian metrid srojection
Eomdpor LG . results on pointwise Lipschitzian met )

a sven o PR
been given it |15

Qur DEIC SOMIC OLNCT FOSUy o DBOs ¢ '}i'()f‘iii‘ a0 I Joneroiy

It is our belief that some other 4 best apy 0 1

spaces could be formulated and proved v the framework of spaces with

properiy {7 or fand properiy 1)
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