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INTRODUCTION

Some results on best approximation in concrete spaces, e.g .. the space of
continuous functions or the space of integrable functions. lead us to

introduce in '8. 10 I two classes of normed linear spaces called "with
property (C)" 181 and "with property (/1 r [10 I. which seems to be
particularly well suited for applications to best approximation. To support
this idea. we present here much new material which. we hope, will convince
the reader of the usefulness of these classes. From our general results proved
for a space which belongs to one or both of these classes, we derive many
known results for the concrete spaces which are contained in [I, 5. 6, 8. ! 2.
leI, 15. 17, 19. 21 I. We notice here that these results for the concrete space:,
referred to above are sometimes formulated and always proved. using the
specific properties of the spaces under consideration.

Another way of generalization concerns the approximant set. In this papc r

we consider best approximation by elements of suns. As is well known. any
:onvex set is a sun. but the converse is not true. Hcnce somc results on best
approximation by elemcnts of linear subspaces or convex sets in the concre1e
;,paccs can be extended to suns. using our results.

On the other hand. the simple fact that a concrete space belongs to one or
both of these classes furnishes (by the definitions of these classes)
geometrical properties of that space. In particular. we obtain common
geometrical properties for the main concrete spaces C(Q), C(l(T). L I(T.,Ii).

l-' (T.,il).
This paper contains four sections, Section I being a presentation of known

results or facts from functional analysis and the theory of best approx
imation. as well as the terminology and notations necessary for an easy
understanding of the other sections. Section 2. resp. Section 3, deals \\lith thc
class of spaces with property (C). resp. (/I). The main result of Section 2
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gives a necessary and sutTicient condiuon in order that a sun 111 a space willi
property (e) be semi~Chebyshev, This result is used in Section 4. which deah
with the class of spaces having both property (e) and property Cl i. to rrOV\
,1 characterization of a semi Chebyshev sun by tht· strict Kolrnogofl1\
criterion, Applications are given throughout these last three ,cellOn:,

In this paper Wl? consider real normed 11I1ear spaces. but the results '.:an \w
extended in the usual way to the complex normed linear Sp:KC'

PRIUMINARILS

Throughout thiS paper I: will stanl! lor a re<ll normed linear space. Its Uti

sphere being denoted by S'/ . and iis cUi1Jugalc,pace F For Y. I I: iu
us denote by r) the uncsided Gal',~,l\i\ diftercntlal a: ,\ the dircctlm:
I.e..

r(x. I') = lim
.' {.(I'

It is well known (sec. e.g.. 171) that

7"(Y,.,) f fl\ \' ()

For each .\ (- l: we denote

.\

\(x) N I \.\' ',' L \~

"
'r "lx. c i \

,\. \1

j (x ) 1I(XI l: \. I /

Then !~~ ) I ! K : we have

V(\ i 4 i.Y 1

allli by I I [1 i we have

·1 (.\' I l' f. \ rl.\. \ I I I/

where lor a set AcE"'. A 1\ e~= E !f(\j 0 for each It
Summarizing some known facts in the concrete spaces (see I !'\. II) !

formulas (1.4). (1.5) and 1101 for (1.6)(U\)), we have the !ollowmg llSc:!U!
formulas.

Let C( Q) be the Banach space of all real valued continuous] unetllll1S 'i"

the compact Hausdorff space Q with the sup norm. and for x t:: C,Q I let 11'

denote by erit x = 1q E QI iX(q)1 =!x : and Z(x) = i4 E:C Q x(q) C~ Oi, T11 ...:l1

N(x) = i y E C( Q) i crit x c Z( Y) i



BEST APPROXIMATION IN CERTAIN CLASSES 159

When (I', f.1) is a positive measure space, let L 1(1', f.1) be the Banach space
of the equivalence classes of measurable real-valued functions x on I' for
which Ix = .1'1 :xl df.1 < 00, and for x E L I(T.,u) we denote by 7'(x) =

t E T! x( t) = 0 f (defined up to a f.1-null set). Then

N(x) = j Y E L I(T.f.1) Z(x) c Z(y) a,(~.1

and fur each x,;' ELI (I'. ,u) we have

r(x, y) rex, --y) .
--_._-'--~---- = I y sign x d,u,

2 ·1'/1 \!

dist(r, N(x)) =

( LS)

( 1.6)

I I 7 i

When Q is a compact Hausdorff space and r a positive Radon measure on
Q such that the support of \' is Q. let CI(Q, r) be the linear subspace of
L '(Q. r). of the equivalence classes of real-valued continuous functions on Q,
'."ith the norm lixl! = .I(! ix! dr, Then for each x E CI(Q, v) we have 1101 that
VI '<O.I')(X) is dense in N"I(J.,,(x) and (1.5 )--( 1.7) are true, replacing L I hy
C '. T by Q and f.1 by I',

let II he the Banach space of all real bounded sequences. endowed with
the sup norm. and for x (~II) E 11

• let I, -,-,- Inl ~111 = x i and lei:. I, be
the set of all sequences (11,) such that lim ~II/ '" ],I.\i. xi <\
Then

.\(x) (llll) E /1 ill" = 0. n E I,. lim '1/1, = O. (n l ) t'" I i Ix I ! 1.8)

fhc last part of this section contains the background material from best
approximation theory. which will be used in the other sections.

Let G be a nonempty subset of E. and for x E E let us denote by P.,(x) the
"ct of all best approximations of x out of G. i.e..

The set c; is called: (1) proximinal if p(;(x) *- 0 for each x E E; (2) semi
C'hebyshel' if P,,(x) contains at most one element for each x E E: (3)

Chehysha if PJ\) contains exactly one element for each x E E.
An clement go EGis called a strongly unique element of best approx

imation of x E E if there exists a number p > 0 such that for each g E G.
x g ~ x- go II + p II g- go ii. G is said to be a strongly ChebysheL' set. if

each x E E has a strongly unique element of best approximation in G.
Clearly. if go EGis a strongly unique element of best approximation of x in
C;. then p(;(x) co, I go f. The converse is not always true.
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For x E E\G and go E G, we recall that the pair (go' x) is said to satisfy
the KolmogorolJ criterion (with respect to G) if r(x ~ go' go g) ~ 0 for each
g E G. and the strict Kolmogorol' criterion (with respect to Gj if
r(x -- go' go - g) >a for each g E G\ {go f. In the literature these criteria are
given in another (equivalent) form. Namely (see, e.g.. 1151). the pair (g(l'.\'

is said to satisfy the Kolmogorov criterion (similarly for the other criterion)
if for each gE G. min1f(g ga)iIEexA(x gol! (.0. where exA(.\ go)
is the set of the extreme points of A (x go)' One can see immediately that

they are equivalent using formula (1.9) below (see the first equality III

113,181 and the second in 121). For x,y f:: E we have

r(x.)') max1fU) lIE A (x)l maxi/(Y) ex A(x)}.

A set GeE is called a sun (sec. e.g.. 120 I) if for each x E t and
go E PIl(x). we have go E Pu(a..... + (1- u) go) for each u? I, Notice that for
a(. a (. L the relation go E Pc,(ux + (I u) go) holds for any set G. The
Kolmogorov criterion was used to characterize the elements of best approx
imation when G is a sun. since Brosowski 131 proved the following result:

I. I. THEOREM 131. A sel G /;' is a S/ill if and (1111.1' ifj;)!" each \ f:.

gil E G. the following slatemellls arc eq!liwlenl

(i) go E Pl.(x).

(ii) (,fio' x) sati~{ies the Kolmogoror criterion.

Notice that (Ii» (i) is valid for an arbitrary set (/,
We shall need the following simple, but usefuL results.

1.2. LEMMA \ IS \. Let (j be a subset o! E., x E', and got: Cj i!

(go,x) sati~f1es the strict Kolmogorol' criterion. then PI/X) ig"r

When G is a linear subspace of E. we denote by 1\, ;(0\

oE PJ't)(.
" , f:

1.3. PROPOSITION 15 [. A linear subspace G oj I:' is ChehyshlT {/ WiO

only if G Pc; 1(0) = E.

2. SPACES WITlI PROPERTY (C)

2.1. DEFINITION 181. The space E is called with property (C) if for each
xES/ and each aEA(x). liali I. we have a=(zi z2)/2, for some
ZiESI withA(x)cA(zi)' i= 1,2. Notice that by (1.2). ziEN(x) and we
have Z i = X + a i for some a i E A (x) . i == I. 2.
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Geometrically, the space E has property (C), if for each x E SI the closed
linear subspace N(x) of E has the property described as fol1ows. Since x is a
smooth point of Sy(X)' there exists a unique !(J E Sy(X)' such that !(J(x) =

xl! = I. Let F, = {z E S,(X) Irp(z) = I f. Then F, is a face of S\(X) with
x E F,. Property (C) requires that each a E A (x) 1 (= iz E N(x) I !(J(z) = Of),
a = 1, to be in the middle of a segment with an end-point in F, and the

other in --F,.

2.2. Remark. If E has property (C), then for each xES/ and each
aEA(x);, Ilalr~ 1, we have a=(zl-z2)/2 for some ziES, with
A(x)cA(zJ i= 1,2.

In 181 we have shown that the spaces C(Q) and L I(T.f1), (LI)1 L'.
have property (C). Using [10, Lemma 21, the assumption (L 1)* == L f can be
deleted. (We recal1 that for xES/ and a E A (x) ~, I a!1 = I, we can choose in
Definition 2.1, for E = C(Q), Zl = x(1 - !al) + a, Z2 = x( 1 -Iall - a and for
E = L I (T, .u), Z) = a + Ia I sign x, z 2 = -a + Ia Isign x.)

If A is a closed set in Q, then the fol1owing subspace of C( Q), II =
Ix E C(Q) Ixl A = 0l has property (C), the proof being similar with that for
C( Q). Hence the space Co(T) of all real-valued functions on the 10cal1y
compact space T, vanishing at infinity, endowed with the sup norm, has
property (C). In particular, Co has this property. Since property (C) is
invariant under linearly isometries, it follows that L f (T,.u) has property (C).

2.3. Remark. No smooth or strictly convex space E, dim E ~2: 2. has
property (C).

2.4. Remark. Property (C) behaves badly with respect to the heredity.
We shall show below (see Remark 2.12) that the space CI(la.bl, v), v the
Lebesgue measure, has not property (C), though it is a dense subspace of
L I( [a, b [, r) which has this property. If E is an arbitrary 2-dimensional
space, then E has property (C) if and only if its unit ball is a paral1elogram.
Hence by 110, Proposition 1, Theorem 71 and Remark 2.3 above, it follows
that when E is a space with property (C), dim E ? 3, then there exists a 2
dimensional subspace of E which has not property (C).

The main result of this section is the following characterization of a semi·
Chebyshev set G, when G is a sun in a space with property (C).

2.5. THEOREM. Let E be a space with property (C) and G a sun of E.
Then G is semi-Chebyshev if and only if for each x E E\G and each
go E PJe) we have (G - go) nA(x - goL = 10f·

Proof Suppose there are x E E\G, and go E Pdx) such that ~or some
gl E G. gl i=go we have gl-goE (G-go)nA(x-goL. Since G is a sun,
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we can suppose

Zi E SF with A(x
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-- go:1 = l. The space E having property (C), there eXISt

gO)cA(zi)' i~" 1,2. such that

gl --- go -, -'
~-"."---_._.~-

! gl go 2

Since go E Pt,(x). by Theorem 1.1 we haH' rLI
gEG. Then by A(x go) A(z,1. L2.
I(zi' go g) ~ 0 for each g E G. whence 0 E P"
G- go is a sun. 0 E PI, ~,,((i g I go ) ;; i)' i

1, 2. and (2. I ). we have

2.1 i

go''!;" U for each
and I I q I. it 1'0110""

",,(::i}'! I 2. and sme(,'
L 2. lienee. h):: ,-Sf

dist (J; '_:;_'S'''_ ::!' G gl))= II~--- ..··-----·-- k'

\ .::.

Therefore (J. g 1 gil E Pt, ,,,I (Ii g 1 gil ) :: I)' that is. (j g" IS IJill Slim;

Chebyshev. and so G is not semi-Chebyshev. This proves the r
portion Df the theorem.

To prove the "if' portion. suppose there is L such :hal
go~gl E /'(,(x). g(l-.f~gl' By Theorem 1.1 it follows that rCY go"g'!' g, 0
for each gEG. For g=gl we must have r(x g".g., ,gj) () SIllCC

otherwise the pair (0. x gil) satisfies the strict Kolmogoro\ criterion wIth
respect to the set L :t1(gl g,,) u~, 0 whenn' Lellima

PI 10 1: on the other hand. by go. g j E Pc,lx l. we nave

g,,1 Is, g,

hence 0 cfi g 1 - gil E PI)x gol. contradicting J\ I(x gi, ) ()',. Therefore
r(x go. gil gil = O. whence by (I.I) \ve get r(x go. g, gil) O. Then
the pair (0. x go) satisfies the Kolmogorov criterion with respect iO

the I-dimensional subspace !gj gol and so OEPle , c" go)' By (221

we also have gl goEP1K , c"l(x go)' Let y=2(x i;,,) \g, g,,).

Then PI"i "nl(y)=2Pik ,<ol(x--go) (gj go). and since i).g ;,'"

Pig, ,,,I(x go)' it follows ±(gl - go) EPic ,,,1(.1') whence. since thlc, latter
set is convex. 0 E Plg,c"J(Y). Therefore we have

.\' '(gl go):' (2.3 )

By OEPlgl KuI U } and Theorem 1.1 we get r(y.1Ui) '-go)) O. 11
I(Y, g1- go} > O. then the pair (0. y) satisfies the strict Kolmogorov criterion
with respect to the set L 2 = ia( g I go} a <01. whence by Lemma l. 2.
Pdy) =--= iOf, By (2.3) we get go gl E PI,(Y). a contradiction. So.
rC;',gl-gO}=O, and in a similar way. using the set L 1 and (2.3). it follows
that r(y,go-gl)=O. By (1.3) we obtain that gl goEA(y). Let
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W = y +- gO' Then w = 2x + (I - 2) g I and since G is a sun and g I E p(J,), it
followsgIEPr;(w). Using (2.3) we have I!w--g l = (y+go)-_·_gl =Iy c=

II(y+go)-go'I=I!w-goii, and so goEP,;(w). Since w go=y we get
0·1= g1- go E (G - go) n A (w -- go) , which completes the proof of the
theorem.

We notice that in the proof of the "if' part of Theorem 2.5 we have not
used the hypothesis that E has property (C). so we have a sufficient
condition for a sun G in an arbitrary space to be semi-Chebyshev.

An immediate consequence of Theorem 2.5 IS

2.6. COROLLARY. Lei E be a space ll'ilh properlY (C) and G a linear
suhspace (!( E. Then G is semi-Chebl'shCl' if' and on(l' it A(x) (i G" !()~. liJl
each x E PI, 1(0).

The necessity condition in Corollary 2.6 can be improved. Indeed. an easy
consequence of Corollary 2.6 gives

2.7. COROLLARY 181. Lei E be (/ space ll'ilh properly (C) and G (/ linear
subspace of E. Then G is scmiChebyshcl' if and only if N(x) (', G :O! jC)1'
each x E PI; 1(0).

Even when G is a convex set. we can not improve the "only if' condition
In Theorem2.5 by the condition N(x g!l)(i(G--g,,)==;Oi . .'(EE\G.

gil E PrJr), as simple examples show.
For E = C( Q) (resp. E = L I(T. ,ll)) by Corollary 2.6 and (1.4) (resp.

Corollary 2.7 and (1.5)) we obtain the following result of Cheney and
Wulbert IS. Theorem 101 (resp. IS, Theorem 21 I). which states that a linear
subspace G c C(Q) (resp. G c:: L I(T,IlI) is semi-Chebyshev if and only if ()
is the only element in G which vanishes on an (11,-set (resp. a PI' set), where
an u(,set is any set of the form crit x for some x E PI' 1(0) (resp. a Ill, set is
any set of the form Z(x) for some x E PI' 1(0)).

Using (1.8) and Corollary 2.6 we obtain a result for I' of the same form
as those of Cheney and Wulbert mentioned above.

2.8. COROLLARY. A linear subspace Gel j is semi-Chebyshec it and
only i( 0 is Ihe only elemenl in G whose coordinales vanish on I, and lend 10

zer%r sequences (n k ) E. I~.for x E Pc 1(0).

Using Theorem 2.5 we can also obtain results of a similar form with those
above, when G is a sun in C(Q), L I (T,!J), If.

By Corollary 2.8 we can easily prove the following result of Phelps (117,
p. 25 I \; actually Phelps considered the space L f (T, !J»): Let g = (/n) Elf,
Ig = I. Then the I-dimensional subspace G = Ig I of If is Chebyshev if.
and only if infl!'nl > O. Indeed, if inf Yn] > 0, then by Corollary 2.8, G is
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Chebyshev. Suppose now inf Iy" O. If there is an index flo such that

,',,"::= O. then for x = (~Il)' ~"() = 1 and ~" = 0 for n =Ie no. we have x E PI' 1(0).
It 1no f and . l~ = 0. Since the element g E G vanishes on I" by
Corollary 2.8, G is not Chebyshev. If f'" =Ie 0 for all n. then there exists a

subsequence (n k) such that Jim I,'", = O. and we can suppose ,'n, 0 for all
k. Let x::= (~,,) E I' be defined by ~Il' = 1 . k = L 2.... , and ~i::= 0 for
i E (n k ). Then Ilxl = Lx E PG 1(0). and we have It = 0 and. It is the set of
all subsequences of (n k ). Again by Corollary 2.8. G is not Chebyshev.

Theorem 2.5 can be used to obtain necessary conditions for a sun G to be
Chebyshev in some particular infinite-dimensional spaces with property (C).
The condition 0 E G in the following is not a restrictive one, since G IS a

Chebyshev sun if and only if G - g is a Chebyshev sun, g E G.

2.9, COROLLARY. Let t be an injinite-dimensional space with property
(C) such that for each x E SF' codim N(x) < 00, and leI G be a sun in F,
oE G. (f At spjG} =Ie E is inj/nile·dimensional and G contains an i!1lerior
point relalil'e 10 /H, Ihen G is nol Chebyshel'. In parlicular. such a space F
has no injlnile-dimensional Cheb)'sher' subspaces =Ie E.

Proof Suppose all the conditions in Corollary 2.9 are satisfied and G is

Chebyshev. Let go E G be such that :111 E iH! il m go < I:: c G for some
I; O. In [91 it was shown that for any proximinal set G in an arbitrary

space E the set .ci;, = Ig E bd G I there exists x E E\G with g E p(;(xl! is
dense in bd G. Since lid·; E. we have go E bd G and so there exists

g I E bd G, il g 1 go il < I; such that g I E P(i(x) for some x E E\G. Then there
is () > 0 such that {m E Milim --gill <~} c G, whence 1m E Mjliml < ()l

(G g I)' Since dim Iv! ::=00 and codim A (x -- g I) 00. we have

A(x gil n(G gl)=Ie \0\. which contradicts Theorem 2.5.
The space E = Co satisfies the conditions of Corollary 2.9, So by this result

we obtain the known fact (see. e.g.. 11(1) that Co has no infinite-dimensional

Chebyshev subspaces *co-

With a proof similar to that of Corollary 2.9. one can show

2.10. COROLLARY. LeI E be an inj/nite-dimensional space wilh property
(C), such that for each x E Sf' dim N(x) = 00. and let G be a sun in 1:'.
oE G. If M = spjG f =Ie E is closed and offinite codimensioll. and G contains
an interior point relalive 10 M. Ihen G is not Chebyshev. In parlicular, such a
space E has no Chebyshev subspaces offinile codimensioll T E.

The space E = L I (T, f.l). where (T, f.l) has no atoms. satisfies the conditions
of Corollary 2.10. whence we obtain to known fact (see. e.g., 1191) that if
(T. /.1) has no atoms then L J (T. .u) has no Chebyshev subspaces of finitc
codimension joL I(T.,u).

By Proposition 1.3 and Corollary 2.7 we get the following necessary
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condition on a space with property (C) in order to have a Chebyshev
subspace of codimension n.

2.11. COROLLARY. Let E be a space with property (C) which has a
Chebyshel' subspace of codimension n. Then there exist at least Ii' linearly
independent elements Xl •...• x" E Sf' such that dim N(x;l ~ n. i = 1.. ... n.

Hence for E = L I (T.!J) we obtain the "only if' part of the following result
(see. e.g.. 1191): The space L I (T.!J) has a Chebyshev subspace or
codimension n if and only if (T. ,11) has at least n atoms. For E = C( Ia. b I)
we obtain the known fact (see. e.g.• 1191) that it has no Chebyshev subspaces
or codimension n for 2 ~ n < 00 (since in this space for x == I. by (1.4).
N(x) = Ixl and for each y E SF' Y * ±x. we have dim N(y) = (0).

Finally. we give the following consequence of Corollary 2.7.

2.12. Remark. The space C(la.bl.v). I' the Lebesgue measure has not
property (C). Indeed. suppose it has this property. and let G be the set of all
algebraic polynomials of degree ~ n defined on la. b I. By Jackson's Theorem
(see. e.g.. 1191). G is a Chebyshev subspace of CI(la.bl.I'). Let P" I be a
polynomial of degree n + I defined on la. b I. and let p" E G such that
I\,(p". I) = Ip"l. Then x = P". I - p" E Pr, 1(0) is a polynomial of degree
n + I: it has at most n + I zeros in Ia. b I. whence by (1.5) for C I. we get
N(x)=CI(la.bl.I'). Then N(x)nG=G. in contradiction with
Corollary 2.7. Therefore CI(la. b 1.1') has net property (C).

3. SPACES WITH PROPERTY (/1)

We remarked in 1101 that for each x. y E E we have

r(x.y) + r(x. -.1') ~ 2 dist(y. N(x)). (3.1 )

3.1. DEFINITION 1101. A space E is called with properly (/1 ) if r(x. .1') +
r(x.-y) = 2 dist( y. N(x)) for each x. y E SF (equivalently. for each x. .I' E E).

In 1101 we asked whether the space C( Q) has property (/1 ). An affirmative
answer is given in the next result.

3.2. THEOREM. The space E = C(Q) has property (/1). Momwer. for
each x E Sf' N(x) is proximinal.

Proof Let x.y E SF such that .I' E N(x). By (1.9) we have

r(x.y) = maxi y(q) sign x(q) I q E crit XI. (3.2)
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Let us put
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[(Y .. y) "i).,')

2

and denote by Jl cc :q (: Q x(q I co I} and f, ;q Q X(ifl

the following continuous function on en! .\
Ii. Ddllk

, IL I,

q I,.

Using n.2) and (3.3) one can easily show that !'(q)j ~ (T(X,:) .;. T(.\:. ,\)12

for each q (::' crit x. By Tietze's Theorem there exists a continuous fundion q

on Q, such that H'(q) {'11/) fo[ each if E crit,\' and If

([(x.y) • [lx, .1'))/2. Let:: li' y. Smce fo[ q cri! Y. ) ).

(3.4) and (1.4) it follows:: E= /V(x). \Vc have dist( r. N(x)) • I\~,

([(x.r)+ t(x.I'))/2, whence by (4.1). dist(J\ N(Vi) (:-(x• .1');

fix. "j' ))/2 1:: which show that C( Q I has property (.1) and that Vl\' i

is proximinaL
\Vith a proof similar to that above. ii follows that j{)[ any c!ose,( Sd

4 Q, I, thiS property (/1), and for each)' 't, . .V(x) is proximinaL !
particular. Col T) has these properties Since property (.11 :, Jnvarian! under
linear isometrics. the space I. ' (Fa) has property ell and .\'(\"1 is pm"
Iminal for each I" E L' iT.pl. in 110 n,T remarked that ,m\ smooth space
has propert\ (.t and we pn\ved that ,he spac,;s Lf(Lu)lnd C;(Q,':I haVe'

property VI). \\,e notlced there that for each \" L'(r..",\(x) PW\

imina!. Property LJ, (as wel! as property (e)) behaves badi\ with respect t(,

the heredity 10
We do not kric)\\, an (~xample of a space with property (e) [nit without til,

Notice that property (Cj implies that for each x Ec S" ;In) face of 5',
containing. Y ha'. the diameter 0 or 2, while propeny L!'~ ;mphcs thaI lor
elvh .\' ( S, . th i ; diameter or the set A L\)' I: III is 0 or 2,

3.3. THEOREM. Lei E be a Ilormed linear)pace. The ./b!lowing assertions
are equivafem:

(i) E has property (/J).

(ii) For each sun G of E, each x E E\G and go E: G. the conditioll

(gE Gl. (3,5 )

is a necessarJ' alld sufficient condition that go E PrJx j.
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(iii) For each linear subspace e c E, each x E E\G and gil (-= e. the
condition

(gE e), (3.h)

is 1I necessary (/lid sldflcient condition that gil E Pr,(x).

Proof: (i) => (ii). Let e be a sun of E, x E E\G and go E e. If go E p(,(x).
by Theorem 1.1 we have r(x - go' go g)? 0 for each gEe. Hence, using
also (3.1 l. we have r(.\. gil' g -- go)- r(x -- go' gil g) ~ r(x - gil' g- gil) +
flY go.go g)~2dist(g-gli.N(x go)) for each gEe, so we have
(3.5 L Note that for the necessity part we have not used the hypothesis (i). If

F has property (/1) and (3.5) holds. then clearly the pair (go' x) satisfies the
Kolmogorov crrterion. whence by Theorem 1.1. gil E Pr,(x).

The implications (ii» (iii) c> (i) follow by 110. Theorem 31.
In the class of spaces with property (,1), statement (ii) or (iii) does not say

more than Theorem 1.1. so only the implication (iii» (i) is worth noting.
Whcn f:' = L 1(1. ,11). if we replace in (3.6) resp. (3.5) thc cxpressions given

hy (I.h) and (1.7), then (iii) is a result of Kripke and Rivlin 112.
Theorem 1.31 and (ii) is a result of Deutsch Ih i·

3.4. Remark. It was observed in [lSI that when e_is a set 111 an
arbitrary normed linear space 1:' such that for each x E= E,G and g" C Pr,(X)
the pair (g", .v) satisfies the strict Kolmogorov criterion. then G is a semi
Chebyshev sun. This follows by Theorem 1.1 and Lemma 1.2.

Using Remark 3.4 and Theorem 3.3 one can easily prove

3.5. PROPOSITION. Let E be a space ll'ith property (,1) and e a set in E.
The j(I!!oH'ing assertions are equil'a!el1l:

i I) For each x E E\,G and gil E G. the pair (go' x) satisjies the strict
Ko!mogol'Oc criterion.

(Ii) For each x E E\G, go E PrJ'). gE e\jgo(' we hace

For E = L I (T. f-1). if we replace in (3.7) the expressions given by (1.6) and
(1.7). then Proposition 3.5 gives 115, Theorem 2.8. (2) ¢> (4)1.

By Remark 3.4. the condition (i) in Proposition 3.5 implies that e is a
semi-Chebyshev sun in an arbitrary normed linear space. The converse is not
always true even when E has property (A) and e is a linear subspace. as
simple examples in a strictly convex and smooth space show. We shall see in
the next section that under some additional assumptions on E, this converse
statement is true.
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4. SPACES WITH BOTH PROPERTIES (C) AND VI)

As one can see by Sections 2 and 3. the followmg spaces have both

properties (C) and (A): C(Q), II (A a closed subset of Q). c.Jn L j (Tp),

L I (T. ,u). By Theorem 3.1 and the comments after the proof of this theorem.

in each of the above concrete spaces. N(xl is proximinal for each x E E.

4.1. THEOREM. Let E be a normed linear space with properties (C) and
(A) such that for each .Y E E. N(x) is proximinal. and let G be a subset (~I' t'.
The following assertions are equivalelli:

(i) G is a semi-Chebysha sun.

(ii) For each x E E\G and go E p(;(x). the pair (go' x) satisj/es the
strict Kolmogorov criterion.

Proof By Remark 3.3 we must only show that (I) ._~ (ii). Let G be a
semi-Chebyshev sun and suppose there are x E E\G and go E Pr,(x) such

that rex -- go. go-- g I) ~ 0 for some g I E G\.l go f. Without loss of generality
we can suppose go = 0 and x 11,= I. Since 0 E p(;(x), by Theorem 1.1. it

follows r(x.--g I) = O. By (1.1) we have r(x. g I) .;;, O. Then [(x. g I) > O. since

otherwise by (1.3). O""gl EA(x) G. whence by Theorem 2.5 G is nol

semi-Chebyshev, a contradiction. Hence by (1.9) there exist II ..Ie E A (X)

such that

[(x. gl) = fl(gl) > O.

rex. -gl) =.!k-gl) = O.

(4.1 )

(4.21

Since N(x) is proximinal. there is y E f\lx)(g I)' By (1.2). .1'= Ax i a for

some AE R and a E A(x) .' Hence. using the hypothesis on F to have

property (A l. and (4.1), (4.2). we get

(4.3 )

Since fIEA(x). we have by (4.3) that fl(gl)-i.=II(gl -Ax-a)~

II gl- Ax - al! =fl(gl)/2, and so A ';;'fl(gl)/2 = II gl" AX - all. By (4.2) and
j~EA(x) we have that ).=I2(Ax+a--gl)~IIAx+a-gill. and so A
IIAx + a - gill> O.

1fa=0. then A=IIAx-g l = Axl:. and since OEP(;(x) and G IS a sun.
we get O,gl E Pr;(AX). which contradicts (i). Therefore a"" O. and using the
hypothesis that E has property (C). we have a/Ii a II = (z 1- z 2)/2, where
z;ESr and A(x)cA(z;). i= 1.2. Now. zi=x+ai for some a;EA(x) ,
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i =--~ I. 2, and so a/llall = (a, - a 2 )/2. Since 0 E P1(\1 (x) and x + ail! = 1 ==

x II. i = 1. 2, it follows that

Let

x + (Wi = 1 for each 0 ,:;; a ,:;; I. i = I. 2. (4.4)

ila
z = (). + I.!a ), + ' a. -' -2 ].

Then hy (4.4) we have

Now. for each IE A (x) we have I(z) = A -t- II al = Iz I, and so A (x) c.4 (z)

Since OEPJ,), by Theorem 1.1 we have r(x.~~g)??O for each gEG.
whence by (1.9) and A (x) c:: A (z) we have also r(z. ~g) ?? 0 for each g E G.
hence 0 E P,;(z). On the other hand

Ii a
g I + !II a I x +-')-- a I

I .-

il

I
i. al ill==i.+ illil!X+'-' a---~(a -a,);i" 2 I 2 I -

I'

I. + I al x + ~O-!l = i. + il I

2 II
... 1

~ I'

rhercfore. O. g IE p(;(z) which contradicts (i) and completes the proof.
For E= L I (T, ,1I). the equivalence (i) .~c> (i,) in Theorem 4.1 was proved h)

Niirnberger i IS. Theorem 2.8. (I) <=;c. (2) I. Replacing condition (i) bv "(i is
semi-Chebyshev," the equivalence of this condition with (ii) was proved in
115_ Theorem 2.4. (1)<~.(3)1 for t;=c(Q) and G a finite dimensional
convex set. Theorem 4, I generalizes this result for arhitrary suns of C( Q),
The equivalence (i)<-c?(ii) in Theorem 4.1 is also true for II' C(J(I).
l' (T,lI).

By 115. Remark 3.31 aT:d Theorem 4.1. we ohtain immediately the
following result.

4.2. COROLLARY. Let E be a space with properties (C) and L1), such
that N(x) is proximinalfor each x E E, and let G be a set in E.

(i) II G is a jinite-dimensional Chebysher subspace of E. then G is a
strongly Chebyshev subspace.
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(ii) ~I G is a oni!dimi!nsional cOIH'ex Cheb)'shel SCI r.. Ihell it
slrongll' Chehl'slla,

(Iii) f! (, is (J jinite·dimensional sei/uCheby,\hi!1 ,'Olile\ CUIlt i\!i);

renex ill the origin or L then Jf)!' each \' E ifilll 0;: I'J\ 1 file demc'l! 0
a strongly uilique clemel1/ !Jest approximatlOli

Statement (i) in Corollary 4,2 has been pi'lJvcd by 0ieV\f1'i.ll1 and

:141 for r C(Q), by Ault et ai. III for L Cilin. 'Nulherl
I: L '(F.,u) and by Nlirnbergcr lIS I fur l: I! Statnllent,
Corollarv 4, have been proved !J\ Nilrnberger lor E

Coroilary+,2 can be used 10 obtain ~ulrl\:icm '.:ondition' for ti1\: :netric
proJection to hi.' pointWise Llp~ehi1Ziaj' sincc Chcnc\ 4. show,.'" 1

pointwise Lipschitzian continuity loll(m'. iron, strong unicit\' pn,l!Kr'I'> F)
E 1, or L 1( r..lI). resllit~) OJ) pointw: i It/ian nll!'tr"

been given ill I j 5 I'
It is our belief that sonl": othn rcsul!:o' ('n n..:sl approxim;n:o:, lI1~tmc.:n'l!,'

spaces could be formulated and provcd If] the:: framcwork ,pace,
propcrt\ (C, \if randl pmp":ll\ i)

R}cl'lcRI',:'>('j",
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!lI'I'IUXlllldllllll li1cl)J'\. ,J,lpprli! /I;"O/'I'.l i 1',/ !l,; 1'('

, I" !J!SIIOI; l'iIl K, [)I IIT\ II. i'11C '.:prc:<IH:i1
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